

Home Search Collections Journals About Contact us My IOPscience

The contribution from spin-orbit coupling of ligand ions to g-factors in  $VCI_2$  and  $VBr_2$ 

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1994 J. Phys.: Condens. Matter 6 6279 (http://iopscience.iop.org/0953-8984/6/31/027)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.147 The article was downloaded on 12/05/2010 at 19:07

Please note that terms and conditions apply.

# The contribution from spin-orbit coupling of ligand ions to g-factors in VCl<sub>2</sub> and VBr<sub>2</sub>

Du Maolu<sup>†</sup><sup>‡</sup> and Li Zhaoming<sup>†</sup>

† China Center of Advanced Science and Technology (World Laboratory), PO Box 8730, Beijing 100080, People's Republic of China
‡ Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, People's Republic of China

Received 22 November 1993, in final form 5 April 1994

Abstract. This paper presents a two-so-coupling-parameter model, in which not only the contribution due to the so coupling of the central TM ions but also that of the ligand ions are included, for the calculation of the g-factors and the anisotropy  $\Delta g (= g_z - g_x)$  of the trigonal d<sup>3</sup> cluster. The calculated results for VCl<sub>2</sub> and VBr<sub>2</sub> show that the contribution to both g and  $\Delta g$  due to the so coupling of the ligand ions is small in VCl<sub>2</sub> but is sufficiently important in VBr<sub>2</sub>, about 85% for g and 40% for  $\Delta g$ . It suggests that in the calculation of g and  $\Delta g$  the two-so-coupling-parameter model should be preferred in the case of heavy-element ligand ions such as Br<sup>-</sup> ions.

#### 1. Introduction

The role of covalence in explaining the microscopic origin of the g-factors of transition-metal (TM) ions has often been neglected because of the complexity of the problem. However, since both the spin-orbit (SO) coupling and covalence increase with increasing atomic number of the ligand ions, contributions to the g-factors from the SO coupling of the ligand electrons are expected to increase with increasing covalence. There have been many experimental investigations of the g-factors of TM ions in covalent crystals, and there has been much interest in the theoretical investigated the g-factors of d<sup>1</sup>-d<sup>9</sup> clusters. Viccaro et al (1982) investigated the g-factors of d<sup>4</sup>-d<sup>6</sup> clusters. Our previous work (Du 1992, Du and Rudowicz 1992, Du et al 1992, Chen et al 1992a, b) investigated the g-factors of d<sup>3</sup>-d<sup>7</sup> and d<sup>2</sup>-d<sup>8</sup> clusters. These studies focused attention on the g-shift  $g - g_s$ , where  $g_s$  is the spin-only value and investigated the contribution due to the SO coupling of both TM ions and ligand ions. In this paper we focus our attention on the anisotropy of the g-factors due to the SO coupling of ligand ions.

The classical crystal-field approach can give expressions for the g-factors of the TM clusters. For a d<sup>3</sup> cluster with octahedral symmetry, Abragam and Bleaney (1970) gave a formula for the g-factor involving only the energy difference between the ground state and the  ${}^{4}T_{2}(t_{2}^{3})$  state and the SO coupling parameter of the TM ions in the crystal. For a d<sup>3</sup> cluster with trigonal symmetry, Macfarlane (1970) gave a third-order perturbation expression for the g-factors using a strong-field perturbation-loop method. In Macfarlane's work, a contribution due to the spin doublets is included, and the contributions to the anisotropy of the g-factors from the trigonal distortion (represented by two crystal-field parameters v and v') and the SO coupling of TM ions (represented by parameter  $\xi$ ) are considered. In

the case of ionic crystals containing TM ions, it is a good approximation. Our previous studies (Du 1992, Du and Rudowicz 1992, Du *et al* 1992, Chen *et al* 1992b) show that the contribution to the g-shift  $g - g_5$  from SO coupling of the ligand ions is smaller than that from SO coupling of the TM ions in the case of the light-element ligand ions, e.g. Cl<sup>-</sup> ions, but it is larger in the case of heavy-element ligand ions, e.g. Br<sup>-</sup> and I<sup>-</sup> ions. In this paper we investigate the effect on the anisotropy  $\Delta g (= g_{\parallel} - g_{\perp} = g_z - g_x)$  due to the SO coupling of the ligand ions.

#### 2. Theoretical model

In the classical crystal-field approach, the one-electron irreducible representation basis function can be written as

$$|\gamma\rangle = |d_{\gamma}\rangle \tag{1}$$

and the SO coupling interaction Hamiltonian as

$$\hat{H}_{\rm so} = \sum_{i} \xi_{\rm c}(r_i) \hat{l}_i \cdot \hat{s}_i \tag{2}$$

where the subscript c denotes the central TM ion and  $|d_{\gamma}\rangle$  is a *d* function transforming as the irreducible representation  $\gamma$ . For the heavy-element ligand ions, the SO coupling of ligand electrons should be considered. Using the LCAO method, the one-electron basis function can be written as (Du 1992)

$$|\gamma\rangle = \sqrt{N_{\gamma}} (|d_{\gamma}\rangle - \lambda_{\gamma}|p_{\gamma}\rangle) \tag{3}$$

and the so coupling interaction Hamiltonian as

$$\hat{H}_{so} = \hat{H}_{so}(d) + \hat{H}_{so}(p) \tag{4a}$$

$$\hat{H}_{so}(d) = \sum_{i} \xi_d(r_{id}) \hat{l}_i \cdot \hat{s}_i$$
(4b)

$$\hat{H}_{so}(\mathbf{p}) = \sum_{i} \xi_{\mathbf{p}}(r_{i\mathbf{p}}) \hat{l}_{i} \cdot \hat{s}_{i}$$
(4c)

where  $N_{\gamma}$  and  $\lambda_{\gamma}$  are renormalization and orbital mixing coefficients, respectively, and  $1 > N_{\gamma} > 0$  and  $1 > \lambda_{\gamma} > 0$  for the antibonding orbital; the subscript  $\gamma \equiv t_{2g}$  or  $e_g$  denotes the irreducible representation of the O<sub>h</sub> group; the subscripts d and p denote the d electron of the central TM ion and the p electron of ligand ion, respectively.

Using equations (3) and (4), the SO coupling interaction matrices within the trigonal basis (Sugano *et al* 1970) are obtained as

(5a)

$$\begin{array}{ccc} x_{+}^{-}(x_{-}^{+}) & x_{0}^{+}(x_{0}^{-}) & u_{+}^{-}(u_{-}^{+}) \\ x_{+}^{-}(x_{-}^{+}) & \begin{pmatrix} \xi_{d}^{t}/2 + \xi_{p}^{t}/2 & -\sqrt{2}\xi_{d}^{t}/2 - \sqrt{2}\xi_{p}^{t}/2 & \sqrt{2}\xi_{d}^{te}/2 - \sqrt{2}\xi_{p}^{te}/2 \\ -\sqrt{2}\xi_{d}^{t}/2 - \sqrt{2}\xi_{p}^{t}/2 & 0 & \xi_{d}^{te} - \xi_{p}^{te} \\ \sqrt{2}\xi_{d}^{te}/2 - \sqrt{2}\xi_{p}^{te}/2 & \xi_{d}^{te} - \xi_{p}^{te} & 0 \end{pmatrix}$$

$$(5b)$$

and

$$\xi_{d}^{t} = N_{t}\xi_{d} \qquad \xi_{d}^{te} = \sqrt{N_{t}N_{e}}\xi_{d}$$

$$\xi_{p}^{t} = N_{t}\lambda_{t}^{2}\xi_{p}/2 \qquad \xi_{p}^{te} = \sqrt{N_{t}N_{e}}\lambda_{t}\lambda_{e}\xi_{p}/2 \qquad (6)$$

where  $x_i^j$  and  $u_i^j$  are the components of the  $t_{2g}$  and  $e_g$  terms, respectively;  $\xi_d$  and  $\xi_p$  are the SO coupling parameters of the d electron of the TM ions and the p electron of the ligand ions in free ions, respectively. Misetich and Buch (1964) and Misetich and Watson (1966) estimated the magnitude of the matrix elements between the central TM ions and ligand ions for KNiF<sub>3</sub> with the assumptions that near the TM ions the ligand functions and  $r_{ip}^{-3}$  are small and near the ligand ions the d functions and  $r_{id}^{-3}$  are small. They came to the conclusion that the elements are very small and can be neglected. In our case, the ligand ions Cl<sup>-</sup> in VCl<sub>2</sub> and Br<sup>-</sup> in VBr<sub>2</sub> as well as F<sup>-</sup> in KNiF<sub>3</sub> are all halogen ions and there are larger TM ion–ligand distances in VCl<sub>2</sub> and VBr<sub>2</sub> than in KNiF<sub>3</sub>. So one can consider that the assumptions are valid. The matrix elements between the d and p orbitals hence are neglected in equation (5). Equation (5) includes the SO coupling interaction of the ligand ions and hence can be used as a basis to calculate the contribution of the SO coupling of the ligand ions.

For a  $d^3$  cluster with a trigonal field, the Hamiltonian can be written as

$$\hat{H} = \hat{H}(10Dq) + \hat{H}(B,C) + \hat{H}(v,v') + \hat{H}_{so} + \hat{H}_{Z}$$
(7)

where  $\hat{H}(10Dq)$  is the octahedral field,  $\hat{H}(B, C)$  is the electrostatic interaction,  $\hat{H}(v, v')$  is the trigonal distortion field,  $\hat{H}_{so}$  is the SO coupling as in equation (4) and  $\hat{H}_Z$  is the Zeeman interaction. For a distortion octahedral field,  $\hat{H}(10Dq)$  and  $\hat{H}(B, C)$  are the dominant terms in equation (7), and usually the cubic parameter 10Dq is larger than the Racah electrostatic parameter B. The diagonal elements  $\langle n|\hat{H}(10Dq) + \hat{H}(B, C)|n \rangle$  in the strongfield scheme equal approximately the eigenvalues of  $\hat{H}(10Dq) + \hat{H}(B, C)$ . Hence we can use Macfarlane's (1970) strong-field perturbation-loop method and take

$$\hat{H}_0 = \hat{H}(10Dq) + \hat{H}_0(B, C)$$
(8a)

$$\hat{H}' = \hat{H}_{b}(B,C) + \hat{H}(v,v') + \hat{H}_{so} + \hat{H}_{Z}$$
(8b)

where  $\hat{H}_{a}(B, C)$  and  $\hat{H}_{b}(B, C)$  are the diagonal and off-diagonal parts of  $\hat{H}(B, C)$ , respectively. The zero-order wavefunctions transforming as the irreducible representations of the octahedron group (Sugano *et al* 1970) are combined with the one-electron wavefunctions possessing the form of equation (3). Using equation (8), we obtain analytical

perturbation formulae for the g-factors of the d<sup>o</sup> cluster with trigonal symmetry as follows:  

$$g_{z} = g_{s} + g_{z}(\xi_{d}) + g_{z}(\xi_{p}) + g_{z}(\xi_{d}, \xi_{p})$$
(9a)  

$$g_{z}(\xi_{d}) = -8k'\xi_{d}^{te}/3D_{1} - 2\xi_{d}^{te}(2k'\xi_{d}^{t} - k\xi_{d}^{te} + 2g_{s}\xi_{d}^{te})/9D_{1}^{2} + 4\xi_{d}^{te^{2}}(k - 2g_{s})/9D_{3}^{2} 
- 2\xi_{d}^{t^{2}}(k + g_{s})/3D_{2}^{2} + 4k'\xi_{d}^{te}\xi_{d}^{t}/9D_{1}D_{3} - 4k'\xi_{d}^{te}\xi_{d}^{t}/3D_{1}D_{2} + 4k'\xi_{d}^{te}\xi_{d}^{t}/3D_{2}D_{3} 
+ 8k'\xi_{d}^{te}v/9D_{1}^{2} - 4\sqrt{2}(k\xi_{d}^{te} + k'\xi_{d}^{t})v'/3D_{1}D_{4}$$
(9b)

$$g_{z}(\xi_{d},\xi_{p}) = 4(2g_{s}-k)\xi_{d}^{te}\xi_{p}^{te}/9D_{1}^{2} - 8\xi_{d}^{te}\xi_{p}^{te}(k-2g_{s})/9D_{3}^{2} - 4(k+g_{s})\xi_{d}^{t}\xi_{p}^{t}/3D_{2}^{2} + 4k'(-1/9D_{1}^{2} + 1/9D_{1}D_{3} - 1/3D_{1}D_{2} + 1/3D_{2}D_{3})(\xi_{d}^{te}\xi_{p}^{t} - \xi_{d}^{t}\xi_{p}^{te})$$
(9c)

$$g_{z}(\xi_{p}) = 8k'\xi_{p}^{te}/3D_{1} + 2\xi_{p}^{te}(2k'\xi_{p}^{t} + k\xi_{p}^{te} - 2g_{s}\xi_{p}^{te})/9D_{1}^{2} + 4\xi_{p}^{te^{2}}(k - 2g_{s})/9D_{3}^{2}$$
$$- 2\xi_{p}^{t^{2}}(k + g_{s})/3D_{2}^{2} - 4k'\xi_{p}^{te}\xi_{p}^{t}/9D_{1}D_{3} + 4k'\xi_{p}^{te}\xi_{p}^{t}/3D_{1}D_{2} - 4k'\xi_{p}^{te}\xi_{p}^{t}/3D_{2}D_{3}$$
$$- 8k'\xi_{p}^{te}v/9D_{1}^{2} - 4\sqrt{2}(k'\xi_{p}^{t} - k\xi_{p}^{te})v'/3D_{1}D_{4}$$
(9d)

and

$$\Delta g = \Delta g(\xi_{\rm d}) + \Delta g(\xi_{\rm p}) \tag{10a}$$

$$\Delta g(\xi_{\rm d}) = 4k' \xi_{\rm d}^{\rm te} v/3D_1^2 - 4\sqrt{2}(2k\xi_{\rm d}^{\rm te} + k'\xi_{\rm d}^{\rm t})/3D_1D_4 \tag{10b}$$

$$\Delta g(\xi_{\rm p}) = -4k' \xi_{\rm p}^{\rm te} v/3D_{\rm I}^2 - 4\sqrt{2}(k'\xi_{\rm p}^{\rm t} - 2k\xi_{\rm p}^{\rm te})/3D_{\rm I}D_4 \tag{10c}$$

where

$$k = N_t (1 + \lambda_t^2/2)$$

$$k' = \sqrt{N_t N_e} (1 - \lambda_t \lambda_e/2)$$
(11)

and  $\Delta g = g_z - g_x$  is the anisotropy of the g-factor;  $g_s = 2.0023$  is the spin-only value; v and v' are the trigonal distortion parameters. The energy denominators  $D_1$ ,  $D_2$ ,  $D_3$  and  $D_4$  are the differences between the ground level  ${}^{4}A_2(t_2^3)$  and the excited levels  ${}^{4}T_2(t_2^2e)$ ,  ${}^{2}T_{2a}(t_2^3)$ ,  ${}^{2}T_{2b}(t_2^2e)$  and  ${}^{4}T_{1a}(t_2^2e)$ , respectively, which either can be extracted from experimental data or can be calculated from following equations:

$$D_{1} = 10Dq$$

$$D_{2} = 15B + 5C$$

$$D_{3} = 9B + 3C + 10Dq$$

$$D_{4} = 12B + 10Dq$$
(12)

In equations (9) and (10), equations 9(c), (9d) and (10c) are due to the contribution of the SO coupling of ligand p electrons. It has not been included in the classical crystal model formulae. Taking  $\lambda_t = \lambda_e = 0$  and  $N_t = N_e = N$ ,  $g_z(\xi_p) = 0$ ,  $g_z(\xi_d, \xi_p) = 0$ and  $\Delta g(\xi_p) = 0$ . Then equations (9) and (10) become Macfarlane's (1970) formulae. For some heavy-element ligand ions, there are larger  $\xi_p$  and larger  $\lambda_t$ ,  $\lambda_e$  than for light-element ligand ions, for example  $\xi_p = 2460 \text{ cm}^{-1}$  and  $(\lambda_t, \lambda_e) \simeq 0.33$  for Br<sup>-</sup> ligand ions but  $\xi_p = 587 \text{ cm}^{-1}$  and  $(\lambda_t, \lambda_e) \simeq 0.31$  for Cl<sup>-</sup> ligand ions (Du 1992). Obviously, in this case,  $g_z(\xi_p)$  and  $\Delta g_z(\xi_p)$  cannot be neglected in an investigation of the g-factors and their anisotropy.

#### 3. Application to VCl<sub>2</sub> and VBr<sub>2</sub>

In VCl<sub>2</sub> and VBr<sub>2</sub> crystals, V<sup>2+</sup>-6Cl<sup>-</sup> and V<sup>2+</sup>-6Br<sup>-</sup> clusters possess trigonal symmetry. In this paper, we investigate g and  $\Delta g$  in VCl<sub>2</sub> and VBr<sub>2</sub> crystals by using equations (9) and (10). For the clusters, the so coupling parameters are  $\xi_d(V^{2+}) = 167 \text{ cm}^{-1}$  (Griffith 1964),  $\xi_p(Cl^-) = 587 \text{ cm}^{-1}$  and  $\xi_p(Br^-) = 2460 \text{ cm}^{-1}$  (McPherson *et al* 1974). One can see that  $\xi_p^t$  and  $\xi_p^{te}$  are smaller than  $\xi_d^t$  and  $\xi_d^{te}$  for the V<sup>2+</sup>-6Cl<sup>-</sup> cluster but  $\xi_p^t$  and  $\xi_p^{te}$  are larger than  $\xi_d^t$  and  $\xi_d^{te}$  for the V<sup>2+</sup>-6Cl<sup>-</sup> cluster but  $\xi_p^t$  and  $\xi_p^{te}$  to g and  $\Delta g$  are more important for VBr<sub>2</sub>.

Using the approximate relation (Du 1992, Du and Rudowicz 1992)

$$f_{\gamma} = N_{\gamma}^{2} [1 - 2\lambda_{\gamma} S_{dp}(\gamma) + \lambda_{\gamma}^{2} S_{dp}^{2}(\gamma)]$$
(13)

and the normalization relation

$$N_{\gamma}[1 - 2\lambda_{\gamma}S_{dp}(\gamma) + \lambda_{\gamma}^{2}] = 1$$
<sup>(14)</sup>

the LCAO coefficients  $N_{\gamma}$  and  $\lambda_{\gamma}$  in equation (3) are related to  $S_{dp}(\gamma)$  and  $f_{\gamma}$ , where  $S_{dp}(\gamma)$  is the group overlap integral of  $d_{\gamma}$  and  $p_{\gamma}$  orbitals:

$$S_{\rm dp}(\gamma) = \int d_{\gamma}^{*}(1) p_{\gamma}(2) \,\mathrm{d}\tau_{1} \,\mathrm{d}\tau_{2} \tag{15}$$

and  $f_{\gamma}$  is the ratio of the electrostatic repulsion in the crystal to that in the free ion.  $f_{\gamma}$  can be obtained from the ratio of the Racah electrostatic parameter in the crystal to that in the free ion (Du and Rudowicz 1992) as

$$f_{\gamma} = B/B_0. \tag{16}$$

The Racah parameters B in VCl<sub>2</sub> and VBr<sub>2</sub> crystals have been obtained from the theoretical investigation of the spectra (Li and Li 1987) and  $B_0$  in the free ion can be taken from the paper by Griffiths (1964). As is well known, it is often convenient to use the Slater orbital in the computation of the overlap integral, but a reasonable SO coupling coefficient cannot be obtained from this orbital. On the contrary, the self-consistent field (SCF) orbital is capable of yielding a reasonable SO coupling coefficient. Clementi and Raimondi (1963) and Clementi *et al* (1967) gave Slater-type SCF orbitals (which are simple to apply) to obtain the SCF energy. We hence use the Slater-type SCF function to calculate the group overlap integral  $S_{dp}(\gamma)$ . The results calculated for  $f_{\gamma}$ ,  $S_{dp}(\gamma)$  and  $N_{\gamma}$ ,  $\lambda_{\gamma}$  for VCl<sub>2</sub> and VBr<sub>2</sub> are listed in table 1. Then we obtain from equation (6) that

$$\xi_{d}^{t} = 156 \text{ cm}^{-1} \qquad \xi_{d}^{te} = 157 \text{ cm}^{-1}$$
$$\xi_{p}^{t} = 25 \text{ cm}^{-1} \qquad \xi_{p}^{te} = 28 \text{ cm}^{-1}$$

for VCl<sub>2</sub>, and

$$\xi_{d}^{t} = 153 \text{ cm}^{-1} \qquad \xi_{d}^{te} = 154 \text{ cm}^{-1}$$
$$\xi_{p}^{t} = 139 \text{ cm}^{-1} \qquad \xi_{p}^{te} = 150 \text{ cm}^{-1}$$

for VBr<sub>2</sub>. Obviously,  $(\xi_p^t, \xi_p^{te}) \ll (\xi_d^t, \xi_d^{te})$  for VCl<sub>2</sub>, but  $(\xi_p^t, \xi_p^{te})$  are close to  $(\xi_d^t, \xi_d^{te})$  for VBr<sub>2</sub>. So the contribution from the SO coupling of the ligand p electron to the g-factor and

Table 1. The group overlap integrals and the LCAO coefficients for VCl<sub>2</sub> and VBr<sub>2</sub>.

|                  | $f_{\gamma}$ | $S_{dp}(t_{2g})$ | $S_{dp}(e_g)$ | λ <sub>ι</sub> | λε     | Nt     | Ne     |
|------------------|--------------|------------------|---------------|----------------|--------|--------|--------|
| VCl <sub>2</sub> | 0.8577       | 0.0258           | 0.0763        | 0.2945         | 0.3191 | 0.9332 | 0.9495 |
| VBr <sub>2</sub> | 0.8198       | 0.0295           | 0.0864        | 0.3366         | 0.3633 | 0.9145 | 0.9353 |

Table 2. The g-factors for VCl<sub>2</sub> and VBr<sub>2</sub>.

|                                       | VCl <sup>a</sup> 2 | VBr <sub>2</sub> <sup>b</sup> |
|---------------------------------------|--------------------|-------------------------------|
| $g_z(\xi_d)$                          | -0.0429            | -0.0458                       |
| $g_z(\xi_p)$                          | 0.0068             | 0.0392                        |
| $g_z(\xi_d, \xi_p)$                   | 0.000 06           | 0.0004                        |
| $g_z - g_s$ (total)                   | -0.0363            | -0.0062                       |
| $g_z - g_s(\text{experiment})^c$      | $-0.032 \pm 0.002$ | $-0.010 \pm 0.002$            |
| g <sub>x</sub> (ξ <sub>d</sub> )      | -0.0410            | -0.0429                       |
| $g_x(\xi_p)$                          | 0.0067             | 0.0380                        |
| $g_x(\xi_d,\xi_p)$                    | 0.000 06           | 0.0004                        |
| $g_x - g_s$ (total)                   | -0.0343            | -0.0043                       |
| $g_x - g_s$ (experiment) <sup>c</sup> | $-0.028 \pm 0.002$ | $-0.007 \pm 0.002$            |

<sup>a</sup> Calculated using the parameters B = 657, C = 2402, Dq = 914, v = -114 (Li and Li 1987) and v' = 300 cm<sup>-1</sup>.

<sup>b</sup> Calculated using the parameters B = 628, C = 2294, Dq = 825, v = -148 (Li and Li 1987) and  $v' = 400 \text{ cm}^{-1}$ .

<sup>c</sup> From Yamada et al (1984).

Table 3. The anisotropy  $\Delta g = g_z - g_x$  for VCl<sub>2</sub> and VBr<sub>2</sub>.

|                                      | VCI <sup>n</sup> <sub>2</sub> | VBr <sub>2</sub> <sup>b</sup> |
|--------------------------------------|-------------------------------|-------------------------------|
| $\Delta g(\xi_d)$                    | -0.0019                       | -0.0029                       |
| $\Delta g(\xi_{\rm D})$              | 0.0001                        | 0.0012                        |
| $\Delta g$ (total)                   | -0.0018                       | -0.0017                       |
| $\Delta g$ (experiment) <sup>c</sup> | $-0.004 \pm 0.002$            | $-0.003 \pm 0.002$            |

<sup>a</sup> For the parameters, see footnote a in table 2.

<sup>b</sup> For the parameters, see footnote b in table 2.

<sup>c</sup> From Yamada et al (1984).

the anisotropy  $\Delta g$  is not negligible for VBr<sub>2</sub>. The results calculated for g and  $\Delta g$ , using equations (9) and (10), are listed in tables 2 and 3.

From table 2, one can find that  $g_z(\xi_d, \xi_p)$  is very small for both VCl<sub>2</sub> and VBr<sub>2</sub>;  $g_z(\xi_p)$  is smaller than  $g_z(\xi_d)$  for VCl<sub>2</sub>, but close to  $g_z(\xi_d)$  for VBr<sub>2</sub>. Here  $|g_z(\xi_p)/g_z(\xi_d)|$  is 85% for VBr<sub>2</sub>. This means that neglecting the contribution from the so coupling of ligand ions results in a large error and hence is unreasonable for the theoretical investigation of the *g*-factors, in the case of heavy-element ligand ions such as Br<sup>-</sup>. The contribution from  $\xi_p$  to  $g_x$  is similar.

From table 3, one can find that  $\Delta g(\xi_p)$  is very small and can be neglected reasonably for VCl<sub>2</sub> but is important for VBr<sub>2</sub>.  $|\Delta g(\xi_p)/\Delta g(\xi_d)|$  is about 40%. The calculated  $|\Delta g(\xi_d)|$  for VCl<sub>2</sub> is smaller than  $|\Delta g(\xi_d)|$  for VBr<sub>2</sub>. It is contrary to the experimental result. The large  $\Delta g(\xi_p)$  for VCr<sub>2</sub>, which has the opposite sign from  $\Delta g(\xi_d)$ , changes the value of  $\Delta g$  for VBr<sub>2</sub> and gives a consistent theoretical result with experiment.

6285

## 4. Conclusion

The theoretical investigation of the g-factors currently uses the one-SO-coupling-parameter formulae. Our work presents a two-SO-coupling-parameter model, in which the contributions from the SO coupling parameters of both the TM ions and the ligand ions to the g-factors are included. For VCl<sub>2</sub> and VBr<sub>2</sub>, the theoretical calculation shows that  $|g(\xi_p)/g(\xi_d)|$  is about 15% and  $|\Delta g(\xi_p)/\Delta g(\xi_d)|$  is about 5% for VCl<sub>2</sub> but  $|g(\xi_p)/g(\xi_d)|$  is about 85% and  $|\Delta g(\xi_p)/\Delta g(\xi_d)|$  is about 40% for VBr<sub>2</sub>. It shows that the contribution due to the SO coupling of ligand ions is important for the g-factors and the anisotropy of the g-factors in the case of Br<sup>-</sup> ligand ions.

## Acknowledgment

This project was supported by the National Natural Science Foundation of China (No 19074037).

## References

Abragam A and Bleaney B 1970 Electron Paramagnetic Resonance of Transition Metal Ions (Oxford: Clarendon) Aramburu J A and Moreno M 1985 J. Chem. Phys. 83 6071 Clementi E and Raimondi D L 1963 J. Chem. Phys. 38 2688 Clementi E, Raimondi D L and Reinhardt W P 1967 J. Chem. Phys. 47 1300 Chen J J, Du M L and Chen K S 1992a Phys. Status Solidi b 170 211 Chen J J, Du M L and Qin J 1992b Phys. Status Solidi b 174 K15 Du M L 1992 Phys. Rev. B 46 5274 Du M L, Chen J J and Chen K S 1992 Acta Phys. Stn. 41 1174 (in Chinese) Du M L and Rudowicz C 1992 Phys. Rev. B 46 8974 Griffith J S 1964 The Theory of Transition-Metal Ions (London: Cambridge University Press) Li Z M and Li F Z 1987 J. Mol. Sci. 5 99 (in Chinese) Macfarlane R M 1970 Phys. Rev. B 1 989 McPherson G L, Koch R C and Stucky G D 1974 J. Chem. Phys. 60 1424 Misetich A A and Buch T 1964 J. Chem. Phys. 41 2524 Misetich A A and Watson R E 1966 Phys. Rev. 143 335 Misra S K and Wang C Z 1989 Phys. Status Solidi b 154 259 Sugano S, Tanabe Y and Kamimara H 1970 Multiplets of Transition Metal Ions in Crystals (New York: Academic) Viccaro M H de A, Sundaram S and Sharma R R 1982 Phys. Rev. B 25 7731 Yamada I, Vbukoshi K and Hirkawa K 1984 J. Phys. Soc. Japan 53 381